Action Disambiguation Analysis Using Normalized Google-Like Distance Correlogram

نویسندگان

  • Qianru Sun
  • Hong Liu
چکیده

Classifying realistic human actions in video remains challenging for existing intro-variability and inter-ambiguity in action classes. Recently, Spatial-Temporal Interest Point (STIP) based local features have shown great promise in complex action analysis. However, these methods have the limitation that they typically focus on Bag-of-Words (BoW) algorithm, which can hardly discriminate actions’ ambiguity due to ignoring of spatial-temporal occurrence relations of visual words. In this paper, we propose a new model to capture this contextual relationship in terms of pairwise features’ co-occurrence. Normalized Google-Like Distance (NGLD) is proposed to numerically measuring this co-occurrence, due to its effectiveness in semantic correlation analysis. All pairwise distances compose a NGLD correlogram and its normalized form is incorporated into the final action representation. It is proved a much richer descriptor by observably reducing action ambiguity in experiments, conducted on WEIZMANN dataset and the more challenging UCF sports. Results also demonstrate the proposed model is more effective and robust than BoW on different setups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Action Disambiguation Analysis Using Normalized Google-Like Distance Correlogram

Classifying realistic human actions in video remains challenging for existing intro-variability and inter-ambiguity in action classes. Recently, Spatial-Temporal Interest Point (STIP) based local features have shown great promise in complex action analysis. However, these methods have the limitation that they typically focus on Bag-of-Words (BoW) algorithm, which can hardly discriminate actions...

متن کامل

Improving Wikipedia Miner Word Sense Disambiguation Algorithm

This document describes the improvements of the Wikipedia Miner word sense disambiguation algorithm. The original algorithm performs very well in detecting key terms in documents and disambiguating them against Wikipedia articles. By replacing the original Normalized Google Distance inspired measure with Jaccard coefficient inspired measure and taking into account additional features, the disam...

متن کامل

Normalized Google Distance of Multisets with Applications

Normalized Google distance (NGD) is a relative semantic distance based on the World Wide Web (or any other large electronic database, for instance Wikipedia) and a search engine that returns aggregate page counts. The earlier NGD between pairs of search terms (including phrases) is not sufficient for all applications. We propose an NGD of finite multisets of search terms that is better for many...

متن کامل

Normalized Web Distance and Word Similarity

Objects can be given literally, like the literal four-letter genome of a mouse, or the literal text of War and Peace by Tolstoy. For simplicity we take it that all meaning of the object is represented by the literal object itself. Objects can also be given by name, like “the four-letter genome of a mouse,” or “the text of War and Peace by Tolstoy.” There are also objects that cannot be given li...

متن کامل

Unsupervised Japanese-Chinese Opinion Word Translation using Dependency Distance and Feature-Opinion Association Weight

Online shoppers depend on customer reviews when evaluating products or services. However, in the international online marketplace, reviews in a user’s language may not be available. Translation of online customer reviews is therefore an important service. A crucial aspect of this task is translating opinion words, key words that capture the reviewers’ sentiments. This is challenging because opi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012